Optimal Interpolating Spaces Preserving Shape
نویسندگان
چکیده
منابع مشابه
Optimal Interpolating Spaces
In this paper we study the existence and characterization of spaces which are images of minimal-norm projections that are required to interpolate at given functionals and satisfy additional shape-preserving requirements. We will call such spaces optimal interpolating spaces preserving shape. This investigation leads to concrete solutions in classical settings and, as examples, n will be determi...
متن کاملInterpolating Hereditarily Indecomposable Banach Spaces
A Banach space X is said to be Hereditarily Indecomposable (H.I.) if for any pair of closed subspaces Y , Z of X with Y ∩ Z = {0}, Y + Z is not a closed subspace. (Throughout this section by the term “subspace” we mean a closed infinite-dimensional subspace of X .) The H.I. spaces form a new and, as we believe, fundamental class of Banach spaces. The celebrated example of a Banach space with no...
متن کاملGeneral Interpolating Sequences for the Bergman Spaces
Most characterizations of interpolating sequences for Bergman spaces include the condition that the sequence be uniformly discrete in the hyperbolic metric. We show that if the notion of interpolation is suitably generalized, two of these characterizations remain valid without that condition. The general interpolation we consider here includes the usual simple interpolation and multiple interpo...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملInterpolating Sequences on Analytic Besov Type Spaces
We characterize the interpolating sequences for the weighted analytic Besov spaces Bp(s), defined by the norm ‖f‖ Bp(s) = |f(0)|p + Z D |(1− |z|2)f ′(z)|p(1− |z|2)s dA(z) (1− |z|2)2 , 1 < p < ∞ and 0 < s < 1, and for the corresponding multiplier spaces M(Bp(s)).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1999
ISSN: 0021-9045
DOI: 10.1006/jath.1998.3307